Genetically altering organismal metabolism by leptin-deficiency benefits a mouse model of amyotrophic lateral sclerosis.
نویسندگان
چکیده
Amyotrophic lateral sclerosis (ALS) is a fatal, neurodegenerative disease that causes death of motor neurons. ALS patients and mouse models of familial ALS display organismal level metabolic dysfunction, which includes increased energy expenditure despite decreased lean mass. The pathophysiological relevance of abnormal energy homeostasis to motor neuron disease remains unclear. Leptin is an adipocyte-derived hormone that regulates whole-animal energy expenditure. Here, we report that placing mutant superoxide dismutase 1 (SOD1) mice in a leptin-deficient background improves energy homeostasis and slows disease progression. Leptin-deficient mutant SOD1 mice possess increased bodyweight and fat mass, as well as decreased energy expenditure. These observations coincide with enhanced survival, improved strength and decreased motor neuron loss. These results suggest that altering whole-body energy metabolism in mutant SOD1 mice can mitigate disease progression. We propose that manipulations that increase fat mass and reduce energy expenditure will be beneficial in the setting of motor neuron disease.
منابع مشابه
Mutant Profilin1 Aggregation in Amyotrophic Lateral Sclerosis: An in Vivo Biochemical Analysis
Introduction: Profilin1 (PFN1) is a ubiquitously expressed protein known for its function as a regulator of actin polymerization and dynamics. A recent discovery linked mutant PFN1 to Amyotrophic Lateral Sclerosis (ALS), which is a fatal and progressive motor neuron disease. We have also demonstrated that Gly118Val mutation in PFN1 is a cause of ALS, and the formation of aggregates containing m...
متن کاملEvaluation of the effectiveness of positive psychology-based interventions on post-traumatic growth, self-compassion and quality of life in patients with amyotrophic lateral sclerosis (ALS)
Introduction: Amyotrophic lateral sclerosis (ALS) is a relatively rare disease that can be associated with various mental, physical and psychological burdens. The aim of this study was to evaluate the effectiveness of interventions based on positive psychology on post-traumatic growth, self-compassion and quality of life in patients with amyotrophic lateral sclerosis. Methods: This descriptive-...
متن کاملGenetically decreased spinal cord copper concentration prolongs life in a transgenic mouse model of amyotrophic lateral sclerosis.
Mutations in the Cu/Zn superoxide dismutase (SOD1) gene cause familial amyotrophic lateral sclerosis (FALS) by gain of an aberrant function that is not yet well understood. The role of Cu(2+) in mediating the toxicity of mutant SOD1 has been earnestly contested. We tested the in vivo effects of genetically induced copper deprivation on the ALS phenotype of transgenic mice expressing G86R mutant...
متن کاملStudies on the therapeutic potential of adult stem cells in the G93A animal model of amyotrophic lateral sclerosis (ALS)
Studies on the therapeutic potential of adult stem cells in the G93A animal model of amyotrophic lateral sclerosis (ALS) Dissertation Submitted in partial fulfillment of the requirements for the degree Significance of behavioural tests in a transgenic mouse model of amyotrophic lateral sclerosis (ALS). Behav Brain Res 213:82-87. Intraspinal injection of human umbilical cord blood-derived cells ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Human molecular genetics
دوره 23 18 شماره
صفحات -
تاریخ انتشار 2014